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Abstract—The high energy consumption projections of
Cloud/Edge applications urge the development of ecologically
sustainable Multimedia Event Processing (MEP) systems. In these
applications, a Multi-Criteria Decision Making (MCDM) problem
must be solved when selecting the best service workers alterna-
tives for processing user queries, according to the user-specific
performance criteria requirements of energy, accuracy and speed.
Moreover, fuzzy logic provides a well-established method, such
as the fuzzy TOPSIS, for dealing with the uncertainties arising
from real-world scenarios, where ambiguities of user requirement
interpretations and imprecision of measurement of the computing
devices may directly impact this decision-making process. How-
ever, this fuzzy method is more complex and computationally
intensive than the original (crisp) TOPSIS. Therefore, it is crucial
to understand to what degree the fuzzy and crisp methods may
be used interchangeably and still get the same results to avoid
unnecessary complexity in sustainable MEP solutions in a real-
world context. In our work, we developed a fuzzy TOPSIS
ranking method for handling the uncertainties of the user criteria
weights and service worker alternative ratings. Contrary to a
previous study, we provide evidence that replacing the fuzzy
TOPSIS method with its crisp counterpart significantly affects
the ranking results when applied to a real-world scenario, with
contradiction rates higher than 60% in most scenarios explored,
which suggests that it is not viable to interchange these methods
without consequences to the sustainability efforts of an MEP
application.

I. INTRODUCTION

Over the last few years, the advance of Big Data ap-
plications and the Internet of Things have highly impacted
the environment [1]. In 2016 the US energy consumption of
data centres was about 1.8% of the whole country [2]. For
the next decade, the combined energy consumption for data
centres, IoT and other devices is estimated to contribute to
over 14% of worldwide energy consumption [3]. Meanwhile,
Multimedia Event Processing (MEP) applications deployed
on the Cloud and Edge, which have been applied to a wide
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range of problems [4], [5], generally make use of State-of-the-
Art Deep Neural Network (DNN) models for processing the
multimedia data [5]. Moreover, some DNN model operations
can have high energy consumption [6], emphasising the need
for sustainable MEP applications on the Cloud and Edge.
Moreover, to adapt to the constant changes in the deployment
environment and changes in user performance requirements,
these MEP applications usually implement some form of
self-adaptive control. With these adaptations, the system is
presented with a Multi-Criteria Decision Making (MCDM)
problem, in which the service worker profiles in the network
must be ranked and selected according to the end-user’s
performance criteria requirements (i.e., energy consumption,
accuracy, and latency), so that each user’s query processing is
done by the best-ranked worker available for the task required
by that user. This decision-making process can be directly
impacted by uncertainties arising from different interpretations
of the user performance requirements and imprecision in
the measurements of the service worker’s devices [7]–[9].
Meanwhile, fuzzy logic has long been proven as a well-
established method for handling imprecision and ambiguities
in MCDM problems [10]. The TOPSIS (Technique for Order
Performance by Similarity to Ideal Solution) [11] is a com-
monly used MCDM ranking method, which was later extended
to the fuzzy domain by Chen to make use of fuzzy logic to
handle some of these uncertainties [10]. However, this fuzzy
uncertainty awareness may present an overhead in complexity
compared to the original (crisp) TOPSIS [12]. Therefore, to
avoid unnecessary complexity, it is crucial to understand in
what cases one can make use of a simpler crisp TOPSIS
instead of the more complex fuzzy method and still get the
same ranking results, in particular when using real-world data
in the context of ecologically sustainable MEP applications on
the Cloud and Edge.

This situation elicits the research question: ”What is the
expected rate of contradictions in the ranking results when
replacing an uncertainty-aware fuzzy TOPSIS method with its
uncertainty-naive crisp counterpart, when considering both
benefit and cost criteria types covered by these methods in
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a real-world scenario of sustainable MEP on the Cloud and
Edge?”.

As a response to this question, our paper provides the
following contributions:

• Development of an uncertainty-aware service worker
selector for sustainable MEP over the Cloud and
Edge. This selector uses the fuzzy TOPSIS method
to rank the available service worker alternatives while
handling the ambiguities of the linguistic variable related
to the user-defined criteria weights and the hardware mea-
surements imprecision in the service worker alternatives,
which can impact the sustainability goals of the system;

• Provide evidence, contrary to a previous study [12],
that replacing the fuzzy TOPSIS method with its crisp
counterpart significantly affects the ranking results
when applied to a real-world scenario. Our comparative
results show contradiction rates in the ranking results
of more than 60% in most scenarios when using real-
world data inputs, full coverage of the TOPSIS using both
benefit and cost criteria, multiple scenarios for the user
criteria requirements (i.e., energy, speed and accuracy),
and a range of alternatives on different deployment envi-
ronments setups.

The remainder of this paper is organised as follows. Section
II describes the related works and the research gap targeted
by our study. Next, in Section III, we describe the use of
the TOPSIS method in our study case of sustainable MEP
applications. In Section IV, we give a brief description of
the crisp and fuzzy TOPSIS methods. Section V presents the
experiments for comparing both methods. Section VI discusses
the results of the fuzzy and crisp TOPSIS comparison. Finally,
in Section VII, we draw conclusions and present future works.

II. RELATED WORKS

This section will briefly describe the related works on
service selection on fuzzy uncertainty-aware Sustainable Mul-
timedia Event Processing frameworks for Cloud and Edge. In
RobusT2Scale [13], an uncertainty-aware self-adaptive Cloud
elastic scaling solution is proposed for balancing response
time and computational resources, using Fuzzy Q-Learning
for knowledge evolution and a rule-based fuzzy controller
for handling the uncertainty in the system administrator (sys-
admin) policies definitions and system monitoring. Similarly,
[7] proposes a proof-of-concept rule-based fuzzy controller for
uncertainty-aware self-adaptive scaling of service workers with
a focus on resource-constrained Edge deployment according
to the sys-admin requirements. [8] presents a rule-based fuzzy
self-adaptive demand- and uncertainty-aware task management
that maximises performance and reduces energy consumption
by analysing the decision of offloading tasks from Edge
nodes to their peers in a Cloud and Edge web service study
case. [14] uses the fuzzy TOPSIS method for web service
selection based on the Quality of Service (QoS) definitions
while considering benefit and cost criteria in their use case
of a diabetes monitoring system, but focusing on HTTP-
based connections instead of the multimedia data streams

inherent to MEP systems. [9] describes how the scheduler
interpretability is strongly affected in both fuzzy and crisp
scheduling solutions for cloud computing applications with
a focus on the economy and energy consumption impact of
adaptive and uncertainty-aware schedulers.

Additionally, an overview of fuzzy MCDM methods for
service selection can be seen in the comprehensive review done
by [15]. [16] has explored the comparison of fuzzy MCDM
ranking methods. Moreover, comparing fuzzy methods and
their crisp counterpart has also been studied. [17] shows a
high disparity of ranking results from the fuzzy and crisp
VIKOR MCDM methods when comparing their rankings using
data from randomly generated MCDM problems. On the other
hand, [12] points out in their study that the fuzzy TOPSIS
and its crisp counterpart have little difference in their ranking.
These last two works, however, do not utilise real-world
input data nor consider the impact of the uncertainties on the
interpretation of the criteria weights and on the cost functions
present in these methods (i.e., no cost criteria such as energy
consumption is used). Moreover, none of the related works
considers the ambiguities in interpreting end-user-specific per-
formance criteria requirements for the system.

In a real-world context, there are dynamic and complex
environments dependent on variables with vague and am-
biguous human definitions and imprecise measurements [10],
[18], [19]. Therefore, when comparing TOPSIS methods that
are aware or naive to these uncertainties, a more realistic
approach may be to use real-world data measurements instead
of randomised data. It is also essential to consider the full
extent of the TOPSIS method by considering benefit and cost
criteria when comparing the fuzzy and crisp versions.

Overall, there is a gap in current research on the difference
in ranking results when using the crisp TOPSIS compared to
the fuzzy TOPSIS method, which covers both the benefit and
cost criteria and takes into consideration the ambiguities of the
user-defined performance criteria requirements in a real-world
scenario such as sustainable MEP applications on the Cloud
and Edge.

III. APPLICATION OF FUZZY TOPSIS FOR SERVICE
SELECTION

In the context of sustainable MEP applications deployed on
the Cloud and Edge, the fuzzy TOPSIS method can be used
to better select the service workers to process a user query
according to the user performance criteria requirements of
energy, accuracy and speed (i.e., latency). Figure 1 depicts an
example of an MEP application for processing video streams
from a traffic management system. In this case, a user queries
the system for cars with invalid license plates. The traffic
camera images are processed using a service with multiple
workers deployed on both Cloud and Edge environments,
using pre-trained DNN models to detect invalid license plates.
The fuzzy TOPSIS is used to rank the best service workers
(i.e., Edge Worker B) from the available alternatives based
on their ratings of energy, accuracy and speed and according
to the importance of the criteria weights as defined in the



Fig. 1: Example of fuzzy service selection in a DNN-based
MEP system for traffic management deployed on the Cloud
and Edge. The best-ranked service worker (Edge Worker B) is
selected from the available alternatives for processing the user
query based on the user’s performance criteria requirements.

user query (i.e., High, Medium, and Low importance for
energy, accuracy and speed, respectively). Once ranked, the
best alternatives are selected during an adaptation cycle. These
adaptations can be triggered by changes in the deployment
environment (e.g., when a worker is no longer available) or
in the current user requirements (e.g., the inclusion of new
queries with different performance requirements).

IV. BACKGROUND OF THE TOPSIS METHOD

The TOPSIS method, as proposed initially by Hwang and
Yoon [11], focuses on solving crisp MCDM problems by pri-
oritising the alternatives that are closer (in terms of euclidean
distance) to the Positive Ideal Solution (PIS) and farthest from
the Negative Ideal Solution (NIS). This distance is the solution
that minimises the cost criteria and maximises the benefit
criteria. The input of this method is composed of two parts,
the decision matrix D and weights vector W :

D =

A1

A2

Ai

...
Am


X11 X12 X1j ... X1n

X21 X22 X2j ... X2n

Xi1 Xi2 Xij ... Xin

... ... ... ... ...
Xm1 Xm2 Xmj ... Xmn

 (1)

C1 C2 Cj ... Cn

W =
[
w1 w2 wj ... wn

]
(2)

The decision matrix D contains the values Xij of each
alternative Ai for every criterion Cj , over m alternatives and

TABLE I: Linguistic Terms for the Criteria Weight Importance
and Alternative Rating based on [10]

Linguistic Terms Triangular Fuzzy Number
Criteria Weights Alternative Ratings

High (0.7, 0.9, 1.0) (7, 9, 10)
Medium-High (0.5, 0.7, 0.9) (5, 7, 9)
Medium (0.3, 0.5, 0.7) (3, 5, 7)
Medium-Low (0.1, 0.3, 0.5) (1, 3, 5)
Low (0.1, 0.1, 0.3) (1, 1, 3)

n criteria. Meanwhile, the weights vector W , contains the
weights of importance of each criterion Cj , as defined by the
decision maker.

The general steps for the TOPSIS method are defined in
Algorithm 1.

Algorithm 1 TOPSIS General Steps

Input: D, W ▷ As defined in Eq. 1 and 2
Output: Rank, CC ▷ Outputs the rank and Closeness

Coefficients
1: Create a normalised decision matrix R
2: Create the weighted normalised decision matrix V
3: Calculate PIS (A∗) and NIS (A−)
4: Calculate the distance measures d∗i and d−i for benefit and

cost criteria, respectively.
5: Calculate Closeness Coefficient for each alternative

(CCi).
6: Define Rank order according to each CCi.
7: return Rank, CC

In this paper, the TOPSIS method was implemented in
Python using the Scikit-Criteria toolkit, which uses a scale
conversion based on the total sum of values for the criteria
weights (Step 2) and a vector normalisation for the decision
matrix (Step 1) [20].

A. Fuzzy TOPSIS Extension

Chen created the first fuzzy extension of the TOPSIS
method [10]. In this extension, three extra steps of pre-
processing are necessary before following the rest of the
TOPSIS algorithm:

• F.1: Define the Linguistic Variables Scales
• F.2: Apply Criteria/Alternatives Scale Conversion
• F.3: Aggregate criteria weights and alternatives ratings

In F.1, the Linguistic Variables for the criteria weights and
alternative ratings are defined using a 10-points conversion
scale [10]. To avoid division-by-zero issues, the range of
values on this scale was set from 1 to 10 (or 0.1 to 1.0). These
values are expressed using triangular fuzzy numbers (TFN) to
represent five linguistic terms, as shown in Table I.

Next, in F.2, each alternative’s values are converted using
the previously defined 10-point scale [16]. A corresponding
TFN is used by selecting the one with the closest modal
value to the 10-point scale. That is, three alternatives with
the values of 10, 50 and 100 as a criterion would translate



into the respective linguistic terms of ”Low”, ”Medium”, and
”High”, with a corresponding TFN of ”(1, 1, 3)”, ”(3, 5, 7)”,
”(7, 9, 10)”, respectively. Finally, the aggregation methods
from step F.3 used in this paper are the same used in [10],
in which the criteria and alternative ratings of all decision
makers are averaged for their values on the left, modal and
right of their TFN. Similarly, the rest of the general TOPSIS
steps (1 through 6) for the fuzzy extension are followed
according to what was defined by Chen [10]. Our fuzzy
TOPSIS method was implemented in Python, using the Numpy
library and validated with multiple tests against the example
case presented in Chen [10].

B. Pre-Scaled Crisp TOPSIS

To better contrast the results from previous fuzzy and
crisp TOPSIS comparisons [12], we also consider a slightly
modified version of the crisp TOPSIS with the application of
a 10-points conversion scale onto the alternative ratings, as
would be done in step F.2 of the fuzzy TOPSIS. For example,
suppose three alternatives with the ”energy consumption”
criterion of 10, 50 and 100 Watts. A rating of 1, 5, and 10
would be used in this pre-scaled crisp TOPSIS version instead
of directly using their values in Watts, as would be done with
the regular crisp TOPSIS.

V. FUZZY VS CRISP TOPSIS EXPERIMENT

To facilitate the understanding and reproducibility of our
findings, we will describe in this section the metrics used
for comparing the fuzzy and crisp TOPSIS method and the
experiment setup. We considered five scenarios that represent
different user queries in the MEP system, each with a different
need for the user performance criteria of energy consumption,
accuracy and latency (i.e., the delay between the input of an
event in the system and the event being processed and notified
to the end-user). Each scenario is evaluated in all possible
combinations of service worker alternatives with three, five
and ten worker profiles, using 12 service worker profiles
acquired from measurements of state-of-the-art DNN Object
Detection models in a Cloud and Edge deployment environ-
ment. The TOPSIS methods are compared by considering
the difference between the fuzzy TOPSIS ranking and the
result of the crisp TOPSIS of all possible combinations of
the crisp interpretation of the linguistic variable for the user
performance requirements as the criteria weights. This process
is repeated for all combinations of scenario and deployment
environment, with 204820 evaluations executed and analysed
for this paper.

1) Scenarios: We considered for all five scenarios the case
of a user querying the MEP system for a person detection
problem. That is, if a person is detected in a window of
one frame of a video publisher during the query processing
using a service worker DNN model for Object Detection,
then this detection is immediately notified to the user in the
form of a Video Event Knowledge Graph (VEKG) [21]. We
considered the following scenario descriptions for the user per-
formance criteria requirements, where the energy consumption

and latency criteria, respectively, represent sustainability and
responsiveness:

• Scenario 1: Highly sustainable, in which latency has a
medium-high importance, and the accuracy importance is
medium.

• Scenario 2: Medium-low sustainability, in which latency
has a high importance, and the accuracy importance is
medium-high.

• Scenario 3: Highly sustainable, but the other criteria have
only low importance.

• Scenario 4: Highly accurate, but the other criteria have
only low importance.

• Scenario 5: Highly responsive, but the criteria other than
latency have only low importance.

The translation of these linguistic variables into their re-
spective fuzzy representation is done through the lin-
guistic terms scale for the criteria weights (see Ta-
ble I). Therefore, the query using the fuzzy linguistic
terms for Scenario 1 in the MEP system is defined as:

REGISTER QUERY AnyPer sonFuzzyScena r io1
OUTPUT K GRAPH JSON
CONTENT O b j e c t D e t e c t i o n
MATCH ( p : p e r s o n )
FROM SomeVideoInput
WITHIN TUMBLING COUNT WINDOW( 1 )
WITH QOS

e n e r g y c o n s u m p t i o n = ’ h i g h i m p o r t a n c e ’ ,
a c c u r a c y = ’ medium importance ’ ,
l a t e n c y = ’ medium high impor tance ’

RETURN p

Meanwhile, for the same scenario (Scenario 1), the crisp
queries would be similar to the fuzzy, with the only difference
being the representation of the criteria weights, in which the
user would need to interpret and decide on a crisp 10-point
importance weight scale instead of using the linguistic terms.
Therefore, for each scenario, we have up to 27 possible crisp
interpretations of values based on the linguistic terms of each
performance criterion weight. E.g., one possible interpretation
of crisp weight values for Scenario 1 would be the values 9,
5 and 7 for the high, medium and medium-high importance of
energy, accuracy and latency, respectively. Below is an exam-
ple of how the requirements definitions would look like for this
combination of crisp interpretation of weights for Scenario 1:

REGISTER QUERY A n y P e r s o n C r i s p 1 S c e n a r i o 1
. . . / / Same as b e f o r e

WITH QOS
e n e r g y c o n s u m p t i o n = 9 ,
a c c u r a c y = 5 ,
l a t e n c y = 7

RETURN p

2) Deployment Environments: To understand how the
number of alternatives can impact the ranking of the
fuzzy and crisp TOPSIS methods, we executed the exper-
iments in a setup with three, five and ten alternative ser-
vice worker profiles. These profiles were previously created
from the measurement of the energy consumption, accuracy
and speed (throughput) of the DNN-based Object Detec-



tion models: SSD-MobilenetV1 (SSD) [22], Faster RCNN-
InceptionV2 (Faster RCNN) [23], Faster RCNN-Inception-
ResnetV2-Atrous (Faster RCNN-Atrous) [23]. All these mod-
els were pre-trained on the COCO 2017 image dataset [24].
These state-of-the-art models had their performance measured
in a Cloud and Edge deployment environment. For the Cloud,
a Dedicated Server with an Intel i9 8 Core CPU, 64 GB
RAM, GeForce RTX 2080 TI 11GB GPU and 500 GB SSD
was used, while for the Edge, the Jetson TX2 device was
selected. Both of them were tested with and without GPU
processing capabilities enabled [25]. These measurements led
to a total of 12 unique service worker profiles (3 models ×
2 Environments × 2 GPU/CPU), as seen in Table II.

Next, we applied the fuzzy pre-scaling to the worker profiles
to get the alternatives’ fuzzy representation according to the
linguistic scale for the alternative ratings from Table I. This
process was necessary for the fuzzy TOPSIS method and the
pre-scaled crisp TOPSIS, except that the latter used a crisp
10-point scale. These 12 worker profiles for the service of
Object Detection were used to provide multiple combinations
of alternatives with three, five and ten workers to present
the system with real-world data specific to the context of
sustainable MEP on the Cloud and Edge.

A. Evaluation Metrics
We used a similar methodology as in previous works when

comparing these MCDM methods concerning their contradic-
tion rate (C-Rate) in their ranking results [12], [17], [26].
Moreover, to understand the limits of their ranking simi-
larity, we analysed the C-Rate of the Top-1, Top-Half, and
the complete rank (Top-N). Finally, we also compared the
application of the pre-scaling in the crisp TOPSIS solution, as
was done in [12], to evaluate the impact that this fuzzy-specific
TOPSIS pre-scaling would have on the contradiction rates.
We also considered the similarity between alternative ranking
from [12]. However, since the similarity C-Rates were mainly
identical to the exact C-Rates, we decided not to include them
in this study.

The general formulas used to calculate the C-Rates are
described below, in which k indicates up to what index
of the rank with N elements the contradiction function
Cont(rf , rc, k) should be checked; rf represents the ranking
of the fuzzy TOPSIS method in a given scenario and de-
ployment environment combination; Cf is the set of all crisp
TOPSIS rankings (rc) with an equivalent crisp interpretation
of criteria weights to that used in rf , using the same scenario
and deployment environment.

Cont(rf , rc, k) =

{
0 if ∀1 ≥ i ≤ k. rfi = rci ,
1 otherwise.

(3)

C-Rate(rf , k) =

∑
c∈Cf

Cont(rf , rc, k)

| Cf |
(4)

1) Top-1 C-Rate: This measures the rate of contradiction of
only the best-ranked element in the resulting rank of the fuzzy
and its crisp counterparts. This is defined as: C-Rate(rf , 1)

2) Top-Half C-Rate: This identifies the contradiction rate
of the top half (rounded up) of the best-ranked elements
in ranking the fuzzy and crisp solutions. It is defined as:
C-Rate(rf , ⌈N/2⌉)

3) Top-N C-Rate: This represents the contradiction rate of
the complete ranking of the TOPSIS methods. That is: there
is a contradiction if any element in the ranked list of the fuzzy
TOPSIS is in a different position in the crisp TOPSIS. This
rate is defined by: C-Rate(rf , N)

VI. RESULTS AND DISCUSSION

Firstly, we will analyse the contradiction rates when com-
paring the fuzzy and crisp TOPSIS methods. Next, we will
compare the results to the C-Rates when pre-scaling the
alternative ratings in the crisp TOPSIS.

1) C-Rates for The Fuzzy and Crisp TOPSIS: By analysing
the Top-1 C-Rate (see Figure 2a), we can observe that the C-
Rates are significant in most scenarios except for Scenario
5. As expected, based on results from previous studies [12],
[17], [26], these rates increase with the number of alternatives,
with the lowest values being 24% in Scenario 3, with three
alternatives, and 50% and 67%, in Scenario 4, with five and
ten alternatives, respectively. Interestingly, in Scenario 5, the
setup with three alternatives is the only one with a Top-1
C-Rate different from zero, with 0.22%. This odd behaviour
could be attributed to the largely distinct throughput values of
the available worker profiles, making it more likely that both
methods would agree on the best worker in terms of through-
put. That is: when mainly focusing on the latency criterion,
there is only one set of worker profiles with close enough
throughput values that might be affected by the uncertainty in
the measurement of this metric in the specific case of three
alternatives: the Faster RCNN-Atrous model deployed on the
Cloud-CPU, Edge-GPU, and Edge-CPU, with 0.18, 0.14, and
0.02 FPS, respectively (see Table II). The increased Top-Half
C-Rates further imply this possibility (see Figure 2b), with the
lowest rates now being 25% and 74% in Scenario 5 with three
and five alternatives, respectively, and 80% in Scenario 4 with
ten alternatives.

Additionally, the high similarity between the Top-Half and
Top-N C-Rates (see Figure 2c) shows that there are mostly no
contradictions occurring exclusively on the lower half of the
ranked elements, with the only exception being on Scenario
4 with ten alternatives, which has 19% of contradictions
happening exclusively in this lower-half. In the context of
sustainable MEP applications, this high Top-Half C-Rate could
lead to a major discrepancy in the total energy consumption
of the system since, in these applications, congestion controls
are commonly applied to balance the load out of the top-
ranked worker into the next best-ranked worker, once the first
is overloaded with tasks. Moreover, the Top-Half C-Rate of
100% with ten alternatives, in all but one case, indicates that
replacing the fuzzy with the crisp method would lead to a
significantly high impact on sustainability for this case of MEP
applications with high user demand.



TABLE II: Service Worker Profiles

Environment Object Detection Model

SSD Faster RCNN Faster RCNN-Atrous
Energy*
(Watts)

Accuracy*
(mAP)

Throughput*
(FPS)

Energy*
(Watts)

Accuracy*
(mAP)

Throughput*
(FPS)

Energy*
(Watts)

Accuracy*
(mAP)

Throughput*
(FPS)

Edge-GPU 6.6 (0.4) 21 1.33 (0.1) 8.6 (1.1) 28 0.67 (0.1) 14.3 (0.6) 37 0.14 (0.0)
Edge-CPU 8.3 (0.5) 21 4.43 (0.2) 12.0 (0.1) 28 0.42 (0.0) 12.0 (0.4) 37 0.02 (0.0)
Cloud-GPU 163.8 (19.9) 21 34.33 (1.1) 249.9 (26.8) 28 14.23 (3.2) 303.8 (17.5) 37 2.28 (0.43)
Cloud-CPU 188.0 (6.7) 21 45.6 (2.5) 230.6 (6.9) 28 2.89 (0.1) 222.0 (3.1) 37 0.18 (0.0)
*Average values with the standard deviation between parenthesis. mAP: Mean Average Precision. FPS: Frames Per Second

(a) Top-1 C-Rate (b) Top-Half C-Rate (c) Top-N C-Rate

(d) Top-1 C-Rate (Pre-Scaled) (e) Top-Half C-Rate (Pre-Scaled) (f) Top-N C-Rate (Pre-Scaled)

Fig. 2: First row (2a to 2c) shows C-Rates when comparing the fuzzy and crisp TOPSIS methods, while the second row (2d
to 2f) has the C-Rates when using the pre-scaled crisp TOPSIS.

2) C-Rates Using Pre-scaled Crisp TOPSIS: We can ob-
serve from the second row in Figure 2 that applying a simple
pre-scale step in the crisp method to make the input data of
the crisp and fuzzy methods more similar leads to a significant
reduction in the C-Rates compared with the previous scenarios.
In the Top-1 C-Rate with ten alternatives (see Figure 2d),
Scenarios 3 and 4 show a reduction of 71% and 64%,
respectively, when compared to the C-Ratings without using
the pre-scaling in the crisp method. Even in a setup with
ten alternatives, scenarios 4 and 5 have very low Top-1 C-
Rates of 3% and 0%, respectively. However, there are still
high contradiction rates for Scenarios 1 and 2, which are the
two scenarios that do not focus on only one criterion.

As mentioned before, in the context of sustainable MEP
applications, it is necessary to consider more than just the top-
1 element. Thus, we can observe an overall reduction in the
Top-Half C-Rate, especially in Scenario 4 with ten alternatives,
which shows a reduction of 46% (see Figure 2e). Additionally,
the Top-N C-Rates with ten alternatives being mostly the same
as before (see Figure 2f) indicates that it is more frequent
the contradiction rates exclusively on the lower half of the
rank when using the pre-scaled crisp TOPSIS. Nevertheless,

we can still note that the Top-Half C-Rates are significantly
higher, with the lowest values being 21% (Scenario 3 and 4),
35% (Scenario 4), and 34% (Scenario 4) for three, five and
ten alternative worker profiles, respectively.

VII. CONCLUSION

This paper explored the similarity of the ranking results
in the fuzzy and crisp TOPSIS methods in the context of
uncertainty-aware user criteria requirements on the service
selection in sustainable Multimedia Event Processing applica-
tions deployed on the Cloud and Edge. Our results show that
the contradiction rate on the best-ranked element goes from
24% to 99% in most cases, with an even higher rate when
comparing Top-Half and the complete rank list. Additionally,
although the contradictions are less frequent compared with
a pre-scaled crisp TOPSIS, the contradiction rates are still
high, with at least 21% when comparing the Top-Half of the
ranked elements. Our main conclusions are: Firstly, contrary
to previous study [12], we note that there are many real-world
scenarios in which the fuzzy TOPSIS cannot be replaced by
its crisp counterpart without incurring a significant impact on
the ranking results, which may affect the system sustainability



efforts, especially when considering the ambiguities and un-
certainties present in real-world variables and employing both
benefit and cost criteria; secondly, the addition of a 10-point
scale conversion to the alternatives in the crisp TOPSIS as
to bring the input data closer to that of the fuzzy TOPSIS,
although helpful in reducing the contradictions in 71% in one
case, is not enough to replace the fuzzy method without some
trade-offs in the expected ranking results, with contradiction
rates mostly higher than 20%, and with a few scenarios going
as high as 100%. In future works, we plan to evaluate and
measure the impact these high contradiction rates have on the
sustainability goals of an MEP system.
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